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ABSTRACT

Improvements in the efficiency and availability of quantum chemistry codes,

supercomputing centers, and open materials databases have transformed the

accessibility of computational materials design approaches. Thermodynamic

stability predictions play a central role in the efficacy of these approaches and

should be considered carefully. This review covers the fundamentals of calcu-

lating thermodynamic stability using first-principles methods. Stability is

delineated into two main topics—stability with respect to decomposition into

competing phases and stability with respect to phase transition into alternative

structures at fixed composition. For each topic, a summary of the state-of-the-art

is provided along with a tutorial overview of practical considerations. The

application of machine learning to both kinds of stability predictions is also

covered. Finally, the limitations of thermodynamic stability predictions are

discussed within the context of predicting the synthesizability of materials.

Introduction

The virtual design and discovery of new inorganic

crystalline solids using first-principles calculations is

a core discipline in materials science research [1–3].

Quantum chemical approaches such as density

functional theory (DFT) [4] are commonly used to

calculate the properties of known and hypothetical

materials, shedding light on their underlying com-

position-structure–property relationships and

advancing applications including batteries [5], pho-

tovoltaics [6], thermoelectrics [7], catalysts [8],

quantum materials [9], and many others. Open

materials databases [10–18], which together house

DFT-calculated properties for millions of inorganic

crystals, significantly aid this process by allowing any

researcher to leverage the computational expense of

others for projects of their interest. Along with these

massive open data sets, machine learning (ML) has

emerged as a complementary tool to further alleviate

computational expense or assist in the exploration of

novel materials [19–21]. The success of high-

throughput materials discovery [22] and the inverse

design of novel materials with targeted properties

[23] depends critically on the calculation of each
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candidate material’s thermodynamic stability [24].

This review will provide a tutorial introduction into

the role of thermodynamic stability in materials

design, an overview of existing approaches to predict

stability using DFT and ML, and some concluding

thoughts on moving beyond the prediction of stabil-

ity and towards the prediction of synthesizability.

Defining thermodynamic stability

An inorganic crystalline solid material is defined by

two factors — its composition (what elements are in it

and in what proportions) and its structure (how the

atoms of those elements arrange themselves into a

periodic crystal). For most of this review, we will

consider ground-state DFT calculations, which do not

include temperature effects (e.g., entropic effects,

thermal expansion), and accordingly the thermody-

namic potential is simply the total (internal) energy,

E. A material is thermodynamically stable under a

given set of conditions if its energy cannot be lowered

by rearranging its atoms. Energy lowering can arise

from two distinct mechanisms: 1) phase separation

(decomposition) into competing materials with the

same average composition or 2) phase transition to an

alternative crystal structure (polymorph) at fixed

composition. These concepts will be introduced in

this section and discussed in more detail with rele-

vant approaches and examples in the subsequent

sections.

All possible phase separation and phase transition

reactions must be thermodynamically unfavorable

for a material to be deemed stable at a specified set of

conditions. The choice of (a fixed set of) conditions

(temperature, pressure, open/closed system, chemi-

cal potentials, etc.) that describe a system determine

the appropriate thermodynamic potential with which

to evaluate the energy, and material stability can be

dynamic with respect to this potential [25–29]. As a

simple example, high-symmetry crystal structures

(e.g., cubic) are often stabilized at elevated tempera-

tures relative to alternative polymorphs. Alterna-

tively, a metal oxide with a strongly oxidized

transition metal may be stable at low temperature but

at high temperature, becomes unstable with respect

to phase separation into O2 and an alternative metal

oxide that places the transition metal in a more

reduced state.

Once a set of conditions are specified, and the

energies of all relevant materials are computed with

the appropriate thermodynamic potential, stability

can be assessed with respect to phase separation and

phase transition. Stability with respect to phase

transition is determined by comparing the energy of

the material of interest to the energies of all crys-

talline polymorphs having the same composition.

The crystal structure having the lowest energy is

often called the ground-state polymorph and is

stable with respect to phase transition. The magni-

tude of polymorphic (in)stability will be referred to in

this work as DEgs, where DEgs = 0 for the ground-

state structure and DEgs[ 0 for non-ground-state

polymorphs. For example, consider a hypothetical

composition, A2X5 (where A and X are arbitrary

chemical elements) that has two possible crystal

structures — a and b, where a is the ground state and

b is a metastable polymorph. The polymorphic

instability of the b phase can be obtained by simply

computing the difference in total energies of the two

phases: DEgs,b = Eb - Ea.

Stability with respect to phase separation is then

assessed for all ground-state polymorphs across the

relevant chemical space of interest using the convex

hull formalism (Fig. 1). Similar in spirit to Gibbs

energy minimization [30, 31], the convex hull analysis

assesses whether a given material can lower its

energy by decomposing into a linear combination of

materials having the same average composition as

the material of interest. Consider again a candidate

material with the composition A2X5. The formation

energy, DEf, of A2X5 is first obtained by referencing to

the elemental energies:

DEf;A2X5
¼ EA2X5

� 2EA � 5EX

In other words, DEf is the reaction energy for

forming a compound from its elements (e.g., 2A ? 5X

? A2X5), and DEf[ 0 indicates the compound is

unstable with respect to its elemental phases. This

quantity is sometimes also referred to as the ‘‘mixing

energy’’, or the extent to which the energy is lowered

(DEf B 0) or increased (DEf[ 0) by mixing stoichio-

metric amounts of components A and B. It should be

noted that DEf B 0 does not indicate that a material is

thermodynamically stable, only that it will not phase

separate into its elemental components. This topic

will be discussed in more detail in ‘‘From formation

to decomposition reactions’’.
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Once DEf is similarly obtained for all ground-state

polymorphs in the A–X chemical space (e.g., A2X,

AX, A2X7, etc.), these formation energies are pro-

duced as a function of some extensive property (or

properties) of the system, usually the molar compo-

sition of N - 1 elements in a chemical space having

N unique elements —e.g., x in A1-xXx. The lower

convex envelope that joins these points in DEf–

x space is called the convex hull of stability and is

shown by the solid blue line in Fig. 1. Because the

convex hull is defined over fractional composition

space (e.g., x = 2/3 for AX2), each compound should

be represented with a basis of 1 mol of atoms per

compound, and DEf must therefore be normalized

per atom in each formula. In mathematics, a convex

hull is the object that bounds the extreme points in a

set (roughly speaking). If some point, Z, lies on an N-

dimensional convex hull, where N - 1 dimensions

are independent (e.g., chemical composition) and the

Nth dimension is dependent (e.g., formation energy),

then no linear combination of points constrained to

have the same average value as Z for all N - 1

independent dimensions can possibly have a more

extreme value than Z in the Nth dimension. The

convex hull is a convenient tool for thermodynamics

because materials that lie on the convex hull are

thermodynamically stable with respect to phase

separation, whereas materials that lie above the hull

are unstable because there is a linear combination of

alternative compositions through which their energy

can be lowered. In thermodynamics, we care only

about the ‘‘lower’’ convex hull as points that lie above

the DEf = 0 (or equivalent reference state) are neces-

sarily unstable.

The magnitude of (in)stability with respect to

phase separation is called the decomposition energy,

DEd. For unstable materials that lie above the convex

hull, DEd[ 0 and is equivalent to the vertical dis-

tance in formation energy space between that mate-

rial and the hull, as shown for A2X in Fig. 1. DEd is

the reaction energy for forming A2X from the linear

combination of neighbors in composition space (i.e.,

the energy for the hypothetical decomposition reac-

tion: A ? AX ? A2X), typically normalized per atom

in the compound of interest (e.g., divided by the three

atoms that comprise A2X). For stable materials that lie

on the convex hull, DEd B 0 and is equivalent to the

vertical distance in formation energy space between

that material and a hypothetical convex hull drawn

without the material of interest (shown as the dashed

gray line in Fig. 1 for evaluating A2X5). Note that

unstable materials can appear in the decomposition

reaction for stable materials because we are consid-

ering a hypothetical convex hull that excludes the

stable material of interest. In the Fig. 1 example, the

unstable material, A2X7, appears in the decomposi-

tion reaction for the stable material, A2X5, because

A2X7 would be on the hull if A2X5 did not exist.

|DEd| therefore provides the positive change in

DEf that a stable material can tolerate and remain

stable or the negative change in DEf required for an

unstable material to become stable (all other forma-

tion energies being fixed). The related energy above

the convex hull, DEhull, is often reported as the metric

for thermodynamic stability with respect to phase

separation or transition [10]. DEhull and DEd are

equivalent for unstable materials, but for stable ma-

terials, DEhull = 0, whereas DEd can be any value B 0.

In contrast to DEhull which only indicates that a

stable material is stable, DEd quantifies how

stable that material is, providing useful information

with respect to uncertainty in the assessment of sta-

bility as well as plausibility of synthesis. Although

illustrated here for a binary chemical space, A–X, this

approach generalizes exactly to chemical spaces

Figure 1 Illustrating stability within a convex hull phase diagram.

Note that for clarity, only ground-state phases at each composition

are shown here. There could be many hypothetical non-ground-

state polymorphs at any given composition. The solid blue line is

the convex hull. Points lying on the hull (blue circles) indicate

thermodynamically stable phases. Points lying above the hull are

thermodynamically unstable with respect to phase separation. The

boxed reactions indicate the reactions that define DEd for A2X and

A2X5. Note that these reactions must be normalized per atom (e.g.,

by converting AX to A0.5X0.5) to obtain DEd. The dashed gray line

refers to the hypothetical convex hull used to determine the

decomposition reaction and energy for the stable phase, A2X5. The

dashed orange line is the tangent to the convex hull at composition

AX and provides a lower bound on the chemical potential of A,

lA, where AX would still be on the convex hull (stable).
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comprised of any number of elements. Practical

considerations for the calculation of DEf, DEd, and

DEgs will be discussed in detail in the subsequent

sections.

Stability with respect to phase separation

In a typical materials discovery, design, or screening

effort, a large set of candidate materials are initially

considered. Certain filters are then applied to sys-

tematically focus the set of candidate materials to

those most attractive for a given application.

Regardless of application, an essential filter is one

based on stability with respect to phase separation

(DEd). While it’s clear that some DEd filter is needed

to avoid including many unstable (and therefore

unlikely-to-be-synthesized) materials as candidates,

it is not so clear what the DEd cutoff should be to

retain materials as potentially interesting candidates.

In an ideal (but less interesting) world where 1) our

calculations were exact and 2) metastable materials

could not be made, we would only consider materials

as viable candidates if DEd B 0. However, we know

that our DFT calculations are approximations of

reality and many thousands of materials that are

calculated to be unstable with DFT at 0 K have been

synthesized [32]. This arises from both uncertainties

in the DFT-calculated thermodynamics [33] and the

(lack of) conditions considered in these calculations

(temperature, pressure, etc.). Still, DEd provides

essential information regarding the thermodynamic

driving forces to form (or decompose) desired

materials and is an essential tool in the high-

throughput prediction of novel materials. Beyond

using DEd to identify synthesizable materials, the

magnitude of DEd is also indicative of the relative

ground-state electronic interactions in materials.

Because DEd arises from comparing DEf (which arises

from internal energies, E), energy differences arise

only from chemical bonding effects, and not from, for

example, entropic effects.

Formation energy predictions

For thermodynamic calculations of inorganic crystals,

any density functional that yields total energies can

be used, but because the generalized gradient

approximation (GGA) is a standard approximation to

DFT [34], some practical points will focus on this

approach. DEf is the starting point for determining

DEd and accurate predictions of DEf require that the

energy differences between compounds and their

elements be accurately captured. Much of the success

of local and semi-local density functionals in cap-

turing materials thermodynamics arises because of

convenient error cancellation in total energies. That

is, there may be intrinsic errors in calculated total

energies, but if these errors are systematic, the cal-

culation of relative energies will have much smaller

errors. However, the extent of error cancellation is

related to the extent that the materials being com-

pared are similar. For example, it was recognized

many years ago that GGA overbinds the O2 molecule,

resulting in lO that is too negative (where lO = EO

and is the chemical potential of oxygen gas) [35]. DEf

for solid oxides requires comparing the energies of

the solid to O2 (and any other elements in the mate-

rial). The extent of overbinding for molecular O2 is

dissimilar to any overbinding in cation-oxygen bonds

occurring in a crystal, so GGA exhibits large errors

for DEf of oxides. Fortunately, this error can be easily

corrected by modifying the elemental reference

energy for oxygen, lO. Wang et al. fit a simple cor-

rection to lO for a set of six binary main group metal

oxides (Li2O, Na2O, MgO, CaO, Al2O3, SiO2) by

comparing GGA-calculated DEf to experimentally

measured enthalpies of formation, DHf, at standard

conditions (298 K, 1 atm) [36].

This concept has also been generalized such that

the reference energies of all elements could be fit to

maximize consistency with experimental measure-

ments [37, 38]. In this approach, a set of compounds

with experimentally known DHf (from tabulated

calorimetry data [39–42]) are calculated with a given

DFT approximation (e.g., GGA). The reference ener-

gies, li, for the elements of all compounds are then

simultaneously optimized to minimize the sum of

squared differences between calculated DEf and

measured DHf. DEf for an arbitrary compound can be

written as follows, where ni is the number of moles of

element i in the compound, and dli is the correction

to the total energy of element i that is to be fit.

DEf;AaXx... ¼ EAaXx... �
XA;X;...

i

ni li þ dlið Þ ð1Þ

Given a set of compounds with calculated DEf and

measured DHf, we get an overdetermined system of

linear equations of the form of Eq. 1, that can be

J Mater Sci



solved to minimize the disagreement between DEf

and DHf by modification of each dli. Stevanović et al.
showed that the error in calculated DEf (relative to

measured DHf) can be reduced from 250 meV/atom

with pure GGA to 54 meV/atom with elemental

reference energies fit in this fashion for 252 binary

solids [38]. This approach was used by Kirklin et al.

for a larger set of 1,670 compounds, with errors

decreasing from 136 meV/atom with no fitted refer-

ence energies to 81 meV/atom after fitting all ele-

mental reference energies [12]. For context, ‘‘chemical

accuracy’’ is sometimes quoted as resolution within

1 kcal/mol (* 22 meV/atom for an equimolar bin-

ary compound). However, this is simply a rule-of-

thumb meant to estimate the expected uncertainty of

experimental measurements of DHf, and as-such,

should not be considered too quantitatively. An ‘‘ac-

ceptable’’ resolution strongly depends upon the

desired outcome of the calculations.

Beyond accounting for systematic errors with the

treatment of elemental phases, DEf prediction accu-

racy is also dependent upon the choice of functional.

As two examples, including a Hubbard U correction

(GGA ? U) can improve the description of systems

with transition metals [43] and more sophisticated

functionals, such as the meta-GGA SCAN functional

[44], can generally improve calculated DEf and miti-

gate the need for fitted reference energies or the

U correction by more accurately determining the

energy of diversely bonded systems (e.g., by cor-

recting O2 overbinding) [45, 46]. While there are

many DFT approaches available for calculating total

and formation energies, a consistent approach must

be used for all competing phases in a given chemical

space in order to yield meaningful stability predic-

tions (DEd). In this respect, it is often advantageous to

make use of the abundant set of materials available in

open databases that already provide calculated DEf.

The stability of a new candidate material can then be

obtained by calculating only that material and com-

paring to the materials in a given database as long as

the procedure used to calculate the new candidate

and that used by the database are the same (or pro-

ven to be compatible). Instead, if an alternative

approach (functional, U correction, etc.) is used for a

new candidate material, then all relevant competing

phases should be recalculated with this same alter-

native approach in order to consistently determine

DEd for this candidate. This generally precludes the

use of very high level (e.g., beyond-DFT [47])

approaches to calculate DEd for anything but the

simplest chemical spaces. In principle, one could also

develop a scheme to make disparate approaches

compatible with one another, as is done in the

scheme used by Materials Project for mixing GGA

and GGA ? U calculations [43].

From formation to decomposition reactions

Because DFT-calculated total internal energies are not

meaningful on an absolute scale, DEf is the principal

thermodynamic input to the convex hull construc-

tion, and benchmarking efforts traditionally focus on

this quantity. However, it is important for the pur-

poses of assessing stability that we understand how

our chosen calculation procedure affects DEd, which

is the quantity governing material stability. A com-

parison of DEd and DEf for * 85,000 compounds in

Materials Project shows clearly that these two quan-

tities have a highly nonlinear relationship (Fig. 2), so

we should not necessarily expect that benchmarking

on DEf is transferable to DEd. Further, though it is

sometimes stated in the literature that because DEf-

\ 0, a material might be stable, available data does

not support this. Of the 85,014 ground-state materials

(DEgs = 0) drawn from Materials Project and shown

Figure 2 The decomposition enthalpy, DHd, shown against the

formation enthalpy, DHf, (equivalently DEd and DEf) for 85,014

ground-state entries in Materials Project, indicating little linear

correlation between the two quantities. The strong linear

correlation that is present at DHd = DHf arises for chemical

spaces that contain only one compound (* 3% of compounds).

These compounds were excluded from the correlation coefficient,

R2, determination. A normalized histogram of DHf (DHd) is

shown above (along the right side of). Reproduced with

permission from Ref. [48].
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in Fig. 2, 46,582 (* 55%) have DEf\ 0 but are

unstable with respect to phase separation (DEd[ 0),

emphasizing the importance of computing stability

relative to competing compounds (and not just

elements).

In the same way that there is error cancellation

when comparing total energies, E, in the determina-

tion of DEf, there is also error cancellation when

comparing formation energies in the determination of

DEd. This was shown in the work of Hautier et al.

[49], where they studied the formation of ternary

oxides from their binary oxide counterparts, com-

paring GGA and experimental reaction energies for

reactions of the form:

AaOx þMmOy ! AaMmOxþy

While these are not necessarily the actual decom-

position reactions for each ternary oxide, the 135

evaluated reactions provide a reasonable set over

which to understand the extent of error cancellation

that can occur for decomposition-like reactions that

do not contain elemental phases. For these reactions,

all elemental reference energies cancel such that the

associated reaction energies can be computed equiv-

alently with either formation energies or total ener-

gies for each compound. The mean absolute error

(MAE) for GGA compared to experimental reaction

enthalpies for these reactions was found to be only

24 meV/atom, an order of magnitude lower than the

GGA error on DEf reported in Ref. [38]. This result

encourages the notion that DFT errors mostly cancel

one another for chemically similar materials, which is

of critical importance for stability predictions. How-

ever, it should be noted that the reactions studied by

Hautier et al. are not necessarily the decomposition

reactions for each ternary oxide as a ternary com-

pound can compete for stability with a mixture of

elemental, binary, and ternary phases, not just the

isovalent binary oxides evaluated in this study.

A more systematic evaluation of decomposition

reactions was performed by Bartel et al., where

experimental decomposition enthalpies, DHd, were

determined for 1,012 compounds having tabulated

DHf [46]. These experimentally obtained DHd were

then compared to DFT-calculated DEd using GGA

and SCAN. For the purposes of assessing the nature

of errors (and error cancellation) for DEd, decompo-

sition reactions were divided into three types:

(i) Type 1 reactions where a compound competes

only with elemental phases and DEf = DEd; (ii) Type 2

reactions, similar to those studied by Hautier et al.,

where compounds compete only with other com-

pounds and elemental reference energies cancel; and

(iii) Type 3 reactions where both compounds and

elements appear in the stability-defining decompo-

sition reaction. Type 1 reactions will only occur for

materials that are the sole compound in their chem-

ical space with DEf\ 0 and are therefore quite rare.

Type 3 reactions occur for compounds that are near

the elemental boundaries of a phase diagram (i.e., at

high or low values of x in Fig. 1). These decomposi-

tion reactions are interesting from a synthetic per-

spective because the value of DEd can be modulated

by controlling the chemical potential of the element

that participates in the decomposition reaction [29].

Type 2 reactions are the most common, accounting

for 63% of the * 50,000 decomposition reactions

involving compounds tabulated in Materials Project.

The prevalence of Type 2 reactions increases as the

number of elements in a material (and therefore the

number of competing compounds in a chemical

space) increases. For 231 Type 2 decomposition

reactions, GGA and SCAN were found to have nearly

identical agreement with experiment, exhibiting

MAE of 34 meV/atom for DEd calculated using either

functional. For 415 Type 3 reactions, calculated errors

were higher because of the presence of elemental

phases, and SCAN improved slightly upon GGA

(MAE of 73 meV/atom compared to 90 meV/atom).

Notably, fitting elemental reference energies to DEf

did not substantially improve DEd predictions by

either functional, though fitted reference energies

may still prove useful for certain element-form-

ing/consuming reactions such as those considered

for defect formation [50].

A practical consideration in the determination of

DEd is which competing phases to include in the

analysis. An exhaustive approach would consider all

known competing phases in each chemical space of

interest (e.g., by querying the Inorganic Crystal

Structure Database (ICSD) [51]). This approach is

generally tractable if the desired calculation proce-

dure for any new material is compatible with the

approach used by one of the open materials data-

bases, for which most of the ICSD has already been

calculated. However, if an alternative procedure (e.g.,

functional) is needed to accurately describe the

materials of interest, it may be impractical to recom-

pute all known competing phases within this

J Mater Sci



compatible approach. For example, if one is pursuing

new materials in the Sr-Fe-Mo–O chemical space, the

ICSD contains[ 100 unique materials that, in prin-

ciple, should be considered for determining the sta-

bility of the new candidate materials. If the

computational search spans many ternary, quater-

nary, or higher order spaces, the number of compet-

ing phases that need to be calculated grows

tremendously. An attractive simplification of this

problem would be to only consider the common

binary oxides, which often comprise the precursors

used to synthesize higher order materials. However,

based on Materials Project data, ternary (or higher

order) compounds are present in the decomposition

reaction for 42% of ternary compounds and 91% of

quaternary compounds [46]. The approximation of

DEd as the reaction energy from the binaries would

therefore represent a lower bound on DEd as the

introduction of additional competing phases can only

increase DEd. In situations where it is impractical to

apply a chosen calculation procedure to all possible

competing phases, materials should be prioritized

based on DEd (if available at some level of theory)

and proximity in composition space to candidate

materials of interest.

Alternative thermodynamic potentials

Although most applications of DFT for material sta-

bility consider isolated systems in vacuum at 0 K, the

effect of temperature and other intensive properties

can be captured in a thermodynamic stability analy-

sis. As a simple example, the formation energy at 0 K,

DEf, can be mapped into a formation enthalpy, DHf, at

some temperature, T, by including the zero-point

energy correction to the DFT-calculated total energy

and integrating the constant volume specific heat

from 0 K to T. Both of these quantities can be

obtained from the DFT-calculated phonon density of

states [52]. In this case, it has been shown that for-

mation energies (and by consequence, decomposition

energies) are generally unaffected by this mapping

from 0 K energies to 298 K enthalpies, again due to

cancellation of errors [46].

However, if we consider higher temperatures (such

as those often required for the synthesis of solids), the

role of entropy, S, in governing equilibrium grows

linearly as the appropriate thermodynamic potential

is the Gibbs energy, G = H – TS. Gibbs formation

energies, DGf, can differ quite substantially from DEf,

especially at high temperature. As an example, for

Al2O3, DEf & - 3.4 eV/atom whereas DGf(1000 K)

& - 2.8 eV/atom [42]. The primary contribution to

the temperature dependence of DGf is vibrational

entropy [53], which must be considered for both the

compound of interest and the elemental reference

states. Once again, error cancellation plays a role in

the accuracy of DGf and the resulting decomposition

energy, DGd. If all species in a given chemical reac-

tion respond to temperature similarly, then DEf (DEd)

should be a suitable approximation for DGf (DGd).

Within the context of the types of decomposition

reactions discussed previously, the energies of Type 1

and 3 reactions will likely be subject to substantial

temperature effects whereas Type 2 reactions will

not. For example, when only solids are present in the

reaction, DEf (DEd) approximates DGf (DGd) [26].

When gases are involved in a given chemical reaction

(e.g., in the formation reaction for oxides, nitrides,

halides, etc.), it is often assumed that only the tem-

perature-dependence of the gaseous species needs to

be considered [25]. However, it was shown in Ref.

[26] that an incomplete cancellation of vibrational

entropy between the compound (e.g., TiO2) and the

elemental solid (e.g., Ti) leads to significant error in

this approximation that grows as a function of tem-

perature. A simple model for the vibrational entropy

of solids was proposed in Ref. [26] to readily extend

DFT-calculated formation energies to finite tempera-

ture, though the accuracy may be more suitable for

high-throughput evaluations of T-dependent ther-

modynamics, rather than detailed examinations of T-

dependent phase transitions.

For systems exhibiting disorder (e.g., materials

with mixed occupancies), configurational entropy

also contributes significantly to DGf. This is the pre-

vailing contribution stabilizing disordered materials

(e.g., alloys [54], solid solutions [55], and ‘‘high-en-

tropy’’ compounds [56]) relative to their ordered

counterparts. The simplest approach to quantify the

configurational entropy in a system is to assume the

mixed species behave as an ideal solution. Consid-

ering a binary alloy of A and X— A1-xXx —where A

and X exist on the same site in the lattice in equal

average occupation, the ideal mixing entropy, Smix is

calculated as:

Smix ¼ �kB xlnxþ 1� xð Þ ln 1� xð Þ½ �
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where kB is Boltzmann’s constant. This provides an

upper bound on the configurational entropy of *
0.69 kB/atom (* 0.06 meV/atom/K) for an

equimolar solid solution. For comparison, vibrational

entropy differences between intermetallic phases are

typically * 0.1–0.2 kB/atom [57]. A more sophisti-

cated approach for estimating configurational

entropy that accounts for short-range ordering

involves cluster expansion and Monte Carlo simula-

tions, which have been reviewed elsewhere [58]. In

chemical spaces having partially or fully disordered

materials, configurational entropy can play a signifi-

cant role in defining the convex hull and decompo-

sition energies of all phases in that space and

becomes more significant as more species contribute

to disorder [59, 60].

In addition to computing the enthalpic and entro-

pic contributions to the Gibbs energy, an alternative

method is through the CALculation of PHAse Dia-

grams (CALPHAD) approach [61]. This approach is

particularly applicable to the construction of phase

diagrams for multicomponent materials modeled as

solid solutions using a compound energy formalism

[62]. Using computed or experimentally obtained

thermodynamic properties of materials as inputs,

multicomponent phase diagrams are obtained by

fitting models for the Gibbs energy of constituent

(mixed) phases and minimizing the collective Gibbs

energy of the system subject to constraints imposed

by the laws of thermodynamics. Materials systems

that have been extensively studied (e.g., binary

intermetallics) are more amenable to this approach

because the input data required to fit the relevant

Gibbs energy models for these systems are already

measured or calculated. For a more comprehensive

discussion of the details, applications, and limitations

of CALPHAD, the interested reader is referred to the

recent overview by Liu [63].

The Gibbs energy is the natural thermodynamic

potential for a closed system at fixed temperature and

pressure, but materials scientists are often interested

in the stability of materials in systems open to

exchange with the environment (e.g., O2 in air during

synthesis) [25, 64]. For a system open to some ele-

ment, X, we can construct a grand potential, U:

U ¼ G� nXlX

where lX is the chemical potential of the reservoir

of X, and nX the number of moles of X in the

compound being evaluated. An elemental reservoir

may be appropriate to consider for systems in a

reactive environment (e.g., air, water, etc.) or inter-

faced with a reactive species (e.g., a Li metal anode).

The grand potential (sometimes referred to as the

grand canonical or Landau potential) can be more

generally written as:

U ¼ G�
X

i

XiYi

where Xi is an extensive property (e.g., number of

moles of some species) and Yi its intensive conjugate

(e.g., chemical potential of that same species). These

grand potentials can be customized to account for the

handles that are most relevant to a given system —

e.g., partial pressure effects on oxide surfaces [65, 66]

or particle size effects during nucleation [27, 67].

Just as with internal energies and Gibbs energies,

we can also obtain grand potential formation ener-

gies, DUf, by referencing to elemental phases and

grand potential decomposition energies, DUd, by

performing the convex hull analysis within this

potential space. As one example, this approach has

been applied extensively in the computational search

for solid-state electrolytes for Li-ion batteries (Fig. 3)

[68–70]. In these systems, we are often interested in

the electrochemical stability window of a candidate

solid-state Li? conductor when interfaced with a Li

reservoir (the electrodes). Performing a convex hull

analysis using a grand potential with respect to Li

allows the determination of the range of applied

voltages (equivalently Li chemical potentials, lLi,
relative to a reference chemical potential, l0Li) for

which a given material is thermodynamically

stable (on the convex hull). This approach is

Figure 3 A convex hull construction in grand potential space for

a system open to exchange with Li reveals the electrochemical

stability window for Li3PS4. The grand potential, U, is shown

along the y-axis (normalized per non-Li atom in Li3PS4), the

composition of P (relative to S) along the x-axis, with increasing

applied voltage (Li chemical potential) moving from the left panel

to the right one. Reproduced with permission from Ref. [70].
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illustrated for Li3PS4 in Fig. 3, where this material is

calculated to be electrochemically stable at 2.1 V

(lLi = l0Li – 2.1 eV), unstable with respect to

decomposition into Li2S ? Li3P (- Li) at 0 V, and

unstable with respect to S ? P2S5 (? Li) at 3 V. In the

same way that DEd quantifies the driving force for

(in)stability in a closed system at 0 K, the magnitude

of DUd provides the driving force for forming certain

phases at a specified set of conditions relevant to the

synthesis of a material or the operation of a device.

An example of the grand potential approach for

more complex thermodynamic systems is the Pour-

baix potential, which is applicable for ions in aqueous

electrochemical systems. The grand potential for an

ion in an aqueous system at a redox potential E0 takes

the form:

U ¼ G� nH lHþ � E0
� �

� E0Q� nOlO

where Q is the charge of the ion and lH and lO are

constrained by the equilibrium of water and oxygen

[27]. The neutral or ionic phase that minimizes U at a

specified redox potential and pH is the stable phase

and therefore the one shown on the Pourbaix dia-

gram [71] at those conditions. Care must be taken in

this approach to properly reference energies such

that the free energies of solvated ions in solution do

not need to be calculated [72].

Stability in terms of chemical potentials

The Pourbaix phase diagram falls into a class of sta-

bility representations called predominance diagrams

[73], which are common alternatives to the convex

hull visualization. Instead of plotting formation

energy against composition as is done for the convex

hull, these diagrams will instead show the equilib-

rium phase(s) over a range of intensive thermody-

namic inputs, such as chemical potentials of different

species. For example, the ‘‘chemical potential trian-

gles’’ shown in Fig. 4 are constructed by first defining

DEf in terms of the chemical potentials of each ele-

ment for all compounds in a chemical space (Ta-Ge-Ir

in Fig. 4):

DEf;AaXx... ¼
XA;X;...

i

niDli

A material is then stable at (DlA, DlX, …, Dli) if

and only if no other compound satisfies the

condition:

DEf;Aa0Xx0 ... �
XA;X;...

i

niDli

In these diagrams, a stable material will appear as a

green region in Dl-space, indicating that this material

is on the convex hull (DEd B 0) throughout this

region. Unstable materials will not appear in pre-

dominance diagrams because unlike the convex hull

visualization (Fig. 1), there is no energy axis. Because

of this, one should be cautious interpreting these

diagrams because very small changes in DEf (of the

magnitude of DEd) can lead to the appearance or

disappearance of certain phases, encouraging the

calculation of DEd for all phases in addition to

showing their chemical potential window for stabil-

ity. The effect of including (or excluding) certain

competing compounds on the window of stability is

illustrated in Fig. 4. Here, as competing phases with

increasing components (binary, ternary, etc.) are

added to the analysis, the range of chemical poten-

tials over which TaIrGe is stable (the area of the green

region) shrinks dramatically, emphasizing the

importance of including compounds beyond the

standard synthetic precursors when performing sta-

bility analyses.

Figure 4 Chemical potential triangles in the Ta-Ir-Ge chemical

space to analyze the formation of TaIrGe. The chemical potential

of Ta is shown along the x-axis, Ir along the y-axis, and Ge along

the diagonal. The set of competing phases considered in each

analysis is shown by the blue box in each of the four panels. Blue

lines indicate competing phase boundaries in chemical potential

space, and the green region indicates the region in chemical

potential space where TaIrGe is thermodynamically stable.

Reproduced with permission from Ref. [23].
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It should be emphasized that these alternative

approaches to visualizing stability make use of the

same fundamental inputs (DEf and composition) and

must agree on the thermodynamic stability of all

phases. Indeed, the chemical potential window for

the stability of a given phase can also be determined

from tangent lines in the convex hull, as shown by the

dashed orange line in Fig. 1 (i.e., there is duality

between the Gibbs energy or similar thermodynamic

potential and chemical potential [73, 74]). Tradition-

ally, chemical potential triangles are more commonly

used in the fields of semiconductor design and defect

engineering [75], whereas convex hulls have become

the standard approach for more general high-

throughput materials discovery [76]. Anand et al.

recently outlined some of the many connections

between these two approaches for visualizing the

stability of defects on convex hulls [77]. While both

are useful in a variety of applications, in general,

predominance diagrams are common when targeting

the synthesis of a single phase using synthetic

approaches that control chemical potential (e.g.,

sputtering), whereas convex hulls are common for

quickly displaying the thermodynamic stability of a

range of phases over some compositional handle(s).

Stability with respect to phase transition

A given chemical composition can crystallize into a

wide variety of structures, called polymorphs.

Whereas stability with respect to phase separation

requires thermodynamic assessment of formation

energies as a function of composition, stability with

respect to phase transition requires only a compar-

ison of energies at fixed composition. This simplifi-

cation does not make the problem any easier,

however, as the inability to identify the ground-state

crystal structure for a given composition has been

called ‘‘one of the continuing scandals in the physical

sciences’’ [78]. More than 30 years after this declara-

tion, crystal structure prediction (CSP) remains an

active area of materials science research. Oganov [79]

divides the principal challenges for CSP into two

spaces: 1) searching for crystal structures and 2)

ranking them by their energies. This work will focus

primarily on the second task — determining the

stability of a given polymorph with respect to others

at fixed composition. The reader is directed to Refs.

[79–82] for more focused descriptions of CSP,

especially the task of searching for possible crystal

structures.

Polymorph energy ordering

Stability with respect to phase transition typically

occurs on a smaller energy scale than with respect to

phase separation [32]. A convex hull in a chemical

space may span a variety of compositions and a few

eV/atom in terms of DEf (from highly cohesive

compounds with very negative DEf to elemental

phases with DEf = 0). In contrast, when the compo-

sition is fixed, the energy separation between differ-

ent polymorphs can be extremely small, sometimes

on the order of a few meV/atom. These small energy

differences between competing polymorphs empha-

size the need to consider higher levels of theory to

accurately determine the ground-state structure. For

example, Zhang et al. recently showed that for inor-

ganic compounds comprised of main group ele-

ments, the SCAN meta-GGA functional

systematically outperforms the PBE GGA functional

in correctly identifying the ground-state polymorph

[83]. Notably, for transition-metal containing com-

pounds, the improvement was not as dramatic, and

SCAN still misidentified the ground-state in *
15–30% of compounds having polymorphs within

30 meV/atom of the ground-state.

Carefully resolving small polymorph energy dif-

ferences may require pushing further up Jacob’s

ladder [84] e.g., with the random-phase approxima-

tion (RPA) [85] or quantum Monte Carlo (QMC) [47].

Unlike stability with respect to phase separation, for

polymorphic stability, there is much less cancellation

of error between competing phases because we are

simply comparing the total (and not formation or

decomposition) energies of different arrangements of

ions at fixed composition. Hence, small changes in

ionic positions can lead to subtle energetic effects

that, in some cases, can only be captured by sophis-

ticated treatments of the electronic structure. The

increased computational expense of these higher-

level approaches can be prohibitive for medium- or

high-throughput studies, through there has been

limited benchmarking on the order of dozens of

compounds, at least for DEf [86].
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Polymorphic stability under applied
conditions

As with the convex hull analysis, stability with

respect to phase transition can also be sensitive to the

environment. Temperature [87], pressure [88], and

substrate [89] (among other factors [90]) can play an

important role in the relative energies of competing

structures at fixed composition because the arrange-

ment of ions in a structure dictates the response to

these applied conditions. For example, we might

expect softer polymorphs to generally be preferen-

tially stabilized at high temperature relative to harder

polymorphs because of vibrational entropy contri-

butions [53]. Unlike stability with respect to phase

separation, however, because composition is fixed for

a set of polymorphs, polymorph energies are insen-

sitive to changes in chemical potential.

Solid-state synthesis typically occurs at high tem-

perature to overcome the high activation barriers for

self-diffusion in solids. Hence, it is important to

understand how the application of temperature

affects the relative energies of different polymorphs.

Because entropy is the conjugate variable to temper-

ature, entropic contributions can lower the energy of

one polymorph relative to the others as a material is

heated. As a reference, McCormack and Navrotsky

provide a set of known temperature-driven poly-

morphic phase transitions in oxides in the context of

designing high-entropy ceramic materials [91]. Con-

figurational [53] and vibrational [58] entropy usually

play the most significant role in contributing to the

free energies of crystalline solids [92].

As discussed previously in ‘‘Alternative thermo-

dynamic potentials’’, configurational entropy arises

for systems exhibiting disorder. While this is a sig-

nificant factor that stabilizes disordered alloy systems

relative to ordered elemental phases, configurational

entropy can only govern polymorph energy ordering

if a certain polymorph accommodates disorder more

than another (at fixed composition). The phase tran-

sition from an ordered intermetallic to a disordered

alloy at elevated temperature is a result of configu-

rational entropy lowering the Gibbs free energy of the

alloy relative to the intermetallic [93]. A classic

example of a configurationally stabilized polymorph

outside of intermetallics is the high-temperature

superconductor, YBa2Cu3O6?x (YBCO), where disor-

der on the oxygen sublattice in the tetragonal struc-

ture contributes to the high-temperature stabilization

of this polymorph relative to the ordered

orthorhombic phase (Fig. 5). It should be noted that

in Fig. 5, vibrational entropy is included in addition

to configurational entropy in the determination of the

polymorph energy ordering as a function of

temperature.

The calculation of vibrational entropy from first

principles requires the phonon density of states to be

calculated as it is the distribution of these phonon

frequencies that give rise to vibrational entropy in

solids. As discussed by Stoffel et al., from the calcu-

lated phonon density of states, one can obtain the

temperature-dependent free phonon energy with

Bose–Einstein statistics, and by calculating this

quantity at a variety of unit cell volumes, one can

bridge the gap between E(0 K) and G(T) via the

quasi-harmonic approximation [94]. In practice, the

first-principles calculation of vibrational thermody-

namics is a relatively low-throughput procedure, as it

requires the often cumbersome calculation of vibra-

tional properties using density functional perturba-

tion theory [95, 96] or the finite displacement method

[97, 98] at several cell volumes for each material of

interest. Recently, however, the concept of high-

throughput phonon calculations has been explored

and a couple thousand calculated phonon densities of

states are now available in different repositories

[99–101]. The vibrational properties of alloy systems

have also been discussed in detail by van de Walle

and Ceder, who note that the vibrational entropy of

formation for alloys can occur on the same scale as

configurational entropy (* 0.1 - 0.5 meV/atom/K)

[57]. Although often assumed to have significant

effect only at high temperature, there are examples

where vibrational entropy distinguishes polymorphs

Figure 5 DFT-calculated Gibbs energies of YBa2Cu3O6.5 relative

to the orthorhombic crystal structure. Note that because G is given

with respect to an intensive variable, T, G(T) is concave and not

convex as it is with respect to composition (extensive).

Reproduced with permission from Ref. [94].
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even below room temperature, for example, in the

hybrid perovskite CH3NH3Mn(N3)3 [102]. At the

other end of the temperature spectrum, when mate-

rials are near their melting point, the quasi-harmonic

approximation loses accuracy as anharmonic effects

play a larger role [103, 104].

Dynamic stability

The calculation of the phonon density of states not

only assists in determining the vibrational entropy of

solid materials but can also reveal the stability of a

given crystal structure with respect to energy-lower-

ing collective displacements (i.e., dynamic stability)

[52]. When the phonon density of states is computed

by either the finite displacement method or density

functional perturbation theory, the presence of

imaginary modes (negative frequencies) indicates

dynamic instability of that crystal structure. The

phonon spectrum and presence/absence of imagi-

nary modes also reveals useful information regarding

the landscape of potential crystal structures for a

given chemical composition. By deforming a

dynamically unstable crystal structure along the

directions in the Brillouin zone where imaginary

modes exist, one can create so-called line diagrams

[105] toward dynamically stable polymorphs. A

recent example of a line diagram for polymorph

exploration in Bi2Sn2O7 is shown in Fig. 6 and

emphasizes the extremely small energy range that

can be important for distinguishing between com-

peting polymorphs [106]. Dynamically stable crystal

structures have also been systematically identified

using metrics based on order parameters [107] chosen

to detect structural stability for chosen subsystems

(e.g., binary carbon nitrides) [108]. Note that because

the harmonic phonon spectrum is typically calculated

at 0 K, imaginary modes can sometimes be removed

not only by collective displacements but also by

including phonon–phonon interactions in the calcu-

lation of temperature-dependent phonon spectra

[109]. Anomalies may also arise as a result of

approximations in the chosen density functional. For

example, certain GGA functionals were shown to

give unphysical imaginary phonon modes for PbS

and PbTe in their equilibrium structures [110]. Care

should be taken to ensure that observed dynamic

(in)stabilities are physically meaningful and robust

with respect to the chosen calculation procedure.

Ab initio molecular dynamics (AIMD) is a parallel

approach sometimes used to probe the dynamic sta-

bility of crystalline phases. One approach is to per-

form AIMD for a candidate structure at some

temperature and sample configurations at various

time-points to be used as inputs for standard DFT

geometry relaxations. If each of these configurations

converges to the initial candidate polymorph, this is

further (though not conclusive) support for dynamic

stability. If, however, lower energy structures are

found through this approach, this supports dynamic

instability of the initial candidate. This approach is

discussed in more detail in the context of 2D mate-

rials in Ref. [111]. In a less rigorous approach, one

might simply perform an AIMD simulation starting

from a candidate polymorph and observe whether

the structure changes over the course of the simula-

tion at some (preferably high) temperature. In the

author’s opinion, this method is not especially con-

clusive because the transformation of one polymorph

into another can require substantial ionic rearrange-

ment that may not occur over the course of a typical

AIMD simulation.

Any statements regarding the stability of a given

polymorph should account for dynamic stability in

addition to stability with respect to phase separation

Figure 6 Following phonon modes to map polymorphs in

Bi2Sn2O7 starting from the high-temperature Fd-3 m phase.

Energies are shown relative to the newly discovered lowest

energy polymorph, anew. Branches trace the transition pathways

obtained by distorting along single imaginary harmonic modes at

each step. Circles and squares indicate dynamically stable and

unstable structures, respectively, with the space groups as marked.

The wavevectors of the imaginary modes connecting pairs of

structures are indicated next to the solid lines. Reproduced with

permission from Ref. [106].
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and transition as discussed previously. These two

approaches address stability from fundamentally

different perspectives. Dynamic stability addresses

the question — once this material forms, will it

transform to alternative structures? DEd alternatively

addresses the question — can this material form from

constituent phases (i.e., be synthesized) at equilib-

rium? It is common for materials to be dynamically

stable, yet still be unstable with respect to decom-

position (DEd[ 0) into competing compounds, sig-

nificantly complicating the realization of the desired

dynamically stable but non-ground-state phase.

Alternatively, if a material is truly dynamically

unstable at some conditions, then it should not be

possible for this material to be synthesized and per-

sist at those conditions. It could however be possible

to remove this dynamic instability by changing the

conditions (e.g., by thermal or epitaxial stabilization).

Machine learning for material stability

Predicting the stability (or ‘‘formability’’) of crys-

talline solids without experiments or electronic

structure calculations dates to the early days of solid-

state chemistry, with the rules for structural stability

by Linus Pauling [112] and the famous perovskite

tolerance factor introduced by Viktor Goldschmidt

[113]. Fast-forward * 100 years and materials scien-

tists now have tremendous databases of experimen-

tally observed crystal structures, DFT-calculated

properties for most of these materials (and more),

and sufficient computational power to routinely

apply state-of-the-art statistical approaches under the

umbrella of artificial intelligence and machine learn-

ing (ML). Indeed, data-driven analyses of Pauling’s

rules [114] and Goldschmidt’s tolerance factor [115]

reveal they may not be as predictive as one would

think. Machine learning in materials science is a

rapidly growing field, and a comprehensive review is

outside the scope of this work. The interested reader

is referred to one of many recent reviews on the topic

[19–21, 116, 117]. This section will instead focus on

the practical challenges of predicting stability with

respect to phase separation and phase transition

using ML approaches.

Learning stability with respect to phase
separation

The direct prediction of DEd with ML is complicated

by the non-intrinsic nature of decomposition ener-

gies. That is, DEd arises not only from the properties

(DEf, composition) of one material but from the

neighborhood of competing phases in a particular

phase diagram. This also raises questions regarding

the completeness of a chemical space. For instance, if

an ML model predicts DEd for some material, A2X5, in

2021, DEd for that material may change by 2031 as a

result of the discovery of new competing phases in

the A–X chemical space. Note that this is much more

likely to occur with increasing elements in the com-

position of interest as the ratio of yet-to-be-discov-

ered to already-discovered materials likely increases

with chemical complexity (for ternaries, quaternaries,

etc.). Despite the non-intrinsic nature of DEd, there

have been a few attempts to predict this quantity

directly. For example, Schmidt et al., trained a variety

of ML models on compositional features (i.e., those

that require only the chemical formula and not the

structure) on DEd for 20,000 ABX3 compounds in the

cubic perovskite structure, obtaining a mean absolute

error (MAE) of 121 meV/atom on an excluded test

set [118]. Singstock et al., trained a model to predict

DEd for ternary chalcogenides with the chevrel crystal

structure and reported an MAE of * 30 meV/atom

[119]. Ye et al., similarly focused on specific classes of

materials, predicting DEd for C3A2D3O12 garnets and

ABO3 perovskites and reporting MAEs of * 10–30

meV/atom [120]. It should be noted that, in this

work, DEd was approximated as the energy of each

garnet or perovskite with respect to the linear com-

bination of isovalent binary oxides (e.g.,

3CaO ? Al2O3 ? 3SiO2 ? Ca3Al2Si3O12). As dis-

cussed previously, the energies of these reactions are

lower bounds on DEd because they exclude the

potential for ternary and quaternary competing

phases, which are prevalent in many chemical spaces.

A more common approach is to train a model on

DEf, which is an intrinsic material property, then

perform the convex hull construction with predicted

DEf (or a mixture of predicted and DFT-calculated

DEf) to obtain DEd for each material of interest. There

are many examples of both compositional [121–126]

and structural [127–131] models to predict DEf, many

of which were recently benchmarked on a variety of

other material properties [132] in addition to a
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focused study on DEd predictions [48]. When com-

paring the performance of ML models for thermo-

dynamic stability predictions, MAEs were found to

be similar for DEf and DEd (* 60–150 meV/atom for

compositional models; * 40 meV/atom for struc-

tural models), but MAE does not tell the whole story.

As shown in Fig. 2, the distribution of DEf is much

wider than DEd, so the relative error for a fixed MAE

is much larger for DEd. Further, it’s important to

consider how practitioners rely upon thermodynamic

stability predictions. Generally, one is interested in

identifying the relatively few yet-to-be-discovered

stable compounds among many hypothetical candi-

dates. A simulated materials discovery experiment

was performed for several compositional models in

Ref. [48] by excluding 267 quaternary compounds in

the Li-Mn-M–O chemical space (M = Ti, V, Cr, Fe,

Co, Ni, Cu) from training and tasking models with

finding the 9 of these compounds that are thermo-

dynamically stable (DEd B 0). Of six compositional

models studied, none show high correlation between

DFT and ML-predicted DEd for this subset of mate-

rials, and at most only 3 of the 9 stable materials were

successfully identified (Fig. 7). Importantly, when

structure is included in the representation (in this

case, DFT-optimized structures), CGCNN, was

shown to perform much better at this experiment,

correctly identifying 5 of 9 stable materials with only

6 false positives [48]. The caveat here is that these

predictions also make use of the DFT-optimized

crystal structures to make predictions. For real

materials discovery problems, predictions will have

to be made on unrelaxed or partially relaxed crystal

structures. More work is needed to show the efficacy

of these models on unrelaxed structures, but a few

recent efforts have started to address this problem

[133–135].

Recent work on thermodynamic stability predic-

tions suggests that general compositional models

(those that take as input any arbitrary chemical for-

mula) are incapable of predicting DEd with sufficient

accuracy to systematically distinguish between

stable and unstable compounds [48]. However, when

the condition of generality is softened, and models

are developed to focus specifically on a given struc-

ture type (e.g., perovskites) or focused on a particular

composition (e.g., ABX3), direct models for DEd (or

‘‘formability’’) or indirect models that predict DEf are

expected to perform better [115, 120, 136], though this

has not been systematically studied. Additional work

in the space of generative machine learning models

also supports this proposition, where new low-en-

ergy (DEd [ 80 meV/atom) materials were identified

once the search space was constrained to the V–O or

MgMn–O chemical spaces [137, 138].

Learning stability with respect to phase
transition

As discussed previously in the context of Pauling and

Goldschmidt, predicting crystal structure from

chemical composition is a prevailing challenge in

solid-state chemistry. Expanding upon these works

(and many more in between), Pettifor developed

phenomelogical structure maps that cluster binary

compounds crystallizing in the same ground-state

structure using the so-called v-scale [139, 140]. Per-

haps unbeknownst to Pettifor at the time of this work

in the late 1980s, he was using what we would now

refer to as a two-dimensional ‘‘descriptor’’ [141] (vA,
vX for AX compounds) and a very complex decision

tree model to determine the boundaries on various

crystal structure types (C40, C11b, C54, etc.) for

arbitrary AaXx compositions. While Pettifor devel-

oped these maps using only chemical intuition and

hand-drawn decision boundaries, today we make use

Figure 7 Tasking machine learning models with identifying the

few stable compounds among a larger list of quaternary lithium

manganese oxides. Actual decomposition energies (from Materials

Project) are shown along the y-axis with model-predicted

decomposition energies for each of six models shown along the

x-axis. FP = false positive, TP = true positive, TN = true

negative, FN = false negative. Reproduced with permission from

Ref. [48].
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of the suite of ML models at our disposal to construct

similar structure maps for polymorphic stability. As

one example, Ghiringhelli et al. used a compressed

sensing approach to not only separate AX com-

pounds into those that crystallize in the rock salt or

zinc blende structures, but also predict the energy

difference between these two polymorphs within a

two-dimensional descriptor (Fig. 8) [142]. The devel-

opment of descriptor-based approaches for predict-

ing stability with respect to phase transition from

chemical composition have been recently aided by

developments in symbolic ML [143], where candidate

functional expressions are systematically constructed

and optimized to perform a learning task [144, 145].

An alternative strategy to symbolic- or descriptor-

based approaches is learning structure-energy rela-

tionships through ML potentials (MLPs), which are

becoming increasingly popular in computational

materials science [117, 146–148]. MLPs are typically

constructed for a single composition of interest (e.g.,

TiO2) and not expected to apply generally to alter-

native (even if related) compositions (e.g., Ti). This is

fundamentally different than general structural rep-

resentations (CGCNN [128], MEGNet [127], etc.),

where training and application is expected to occur

over a wide range of both structures and composi-

tions. As such, MLPs are seldom applied to make

stability predictions with respect to phase separation

(DEd) because these demand predictions over a range

of related compositions. They should however be

ideally suited to make predictions with respect to

phase transition because they are able to learn the

subtle effects that configurational changes can have

on the energetics of different polymorphs at fixed

composition. Indeed, this approach has been used to

understand the local energetics governing structure

selection in several elemental phases (e.g., boron

[149, 150]). Because these potentials are trained to

understand local effects, they are also suitable for

interrogating non-crystalline phases of these compo-

sitions (e.g., amorphous phases [151, 152]).

MLPs are also starting to be incorporated with

active learning approaches and existing CSP algo-

rithms to accelerate the discovery of new low-energy

polymorphs for select compositions. Podryabinkin

et al., showed a dramatic acceleration of structure

discovery for polymorphs of sodium, boron, and

carbon by on-the-fly training of MLPs and integration

with evolutionary structure prediction approaches in

USPEX [153, 154]. The energetics of various boron

clusters were also resolved with increased computa-

tional efficiency by Tong et al., by combining MLPs

with the CALYPSO structure prediction method

[150]. Similar concepts were recently shown to also be

tractable for energy ordering in more complex com-

positions (e.g., Mg2SiO4) [155]. Because CSP naturally

involves the prediction of novel crystal structures, it

is critical to understand the generalizability of any

trained model to configurations that do not appear in

training. Otherwise, it is likely that these approaches

will fail to identify the true ground-state

configurations.

Outlook — from stability
to synthesizability

Thermodynamic stability is among the most funda-

mental properties of a material because it provides

quantitative information regarding the driving force

for forming or decomposing a phase under equilib-

rium. Ultimately, it is the principal quantity that

suggests whether a compound can be formed and if it

will persist under conditions of interest. First-princi-

ples calculations, open materials databases, and

machine learning have proven to be reliable tools to

assist in determining thermodynamic stability for

many thousands of known and newly proposed

materials. However, stability calculations are not the

end of the road. There are many metastable materials

Figure 8 Separating the space of binary compounds into those

that crystallize in the rock salt (RS) or zinc blende (ZB) structures.

Lines are drawn within each region of the structure map to indicate

the energy difference between RS and ZB structures. Reproduced

with permission from Ref. [142].
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(DEd[ 0) that can be synthesized [32] and many

stable phases (DEd B 0) for which synthesis can be

extremely challenging [156, 157]. Ideally, computa-

tional predictions of thermodynamic stability would

be directly related to synthesizability, but the com-

plex processes that can occur during synthesis are not

purely thermodynamic (i.e., kinetics under difficult-

to-describe conditions play a significant role) and

today, cannot be easily captured with first-principles

calculations [158, 159].

Data-driven surveys of the library of known

materials can help us understand, at least generally,

the relationships between metastability and synthe-

sizability. For example, Sun et al., showed that the

magnitude of accessible metastable phases has a

strong dependence on chemistry (e.g., nitrides can be

more metastable than oxides) and that the magnitude

of metastability is typically larger for phase separa-

tion than for phase transition [32]. Aykol et al.

showed that the magnitude of accessible polymor-

phic metastability is also strongly dependent on

chemistry, and proposed that polymorphs cannot be

synthesized if DEgs is larger than the energy of the

amorphous phase relative to the ground state [160].

Both of these works shed important insights into the

scales of accessible metastability, but it is still difficult

to directly translate these insights into reliable ‘‘rules

of thumb’’ that indicate the accessibility of a given

phase based on DEd or DEgs. Thermodynamic calcu-

lations of stability are fundamentally limited in terms

of predicting the many transformations that can take

place during materials synthesis, but they still have

proven useful when combined with experimental

efforts (often in situ characterization [161]) to

understand phase evolution during materials syn-

thesis for specific systems [64, 157, 162–167].

In addition to combined computational and

experimental studies of synthesis mechanisms within

specific systems, there have also been recent devel-

opments toward general synthesis planning and

prediction for inorganic materials design. McDermott

et al., developed a graph-based approach with a

thermodynamically based cost function to identify

low-energy routes between specified precursors and

target phases [168]. By combining a metric to

approximate nucleation kinetics as well as a metric to

account for parasitic decomposition reactions, Aykol

et al., developed a two-dimensional map where the

most likely synthesis reactions for a given target lie

on the Pareto frontier [169]. On the topic of

polymorphic stability and accessibility, Stevanović

et al., developed an approach to map crystal struc-

tures to one another and estimate the kinetic barrier

to diffusionless transformations between polymorphs

[170]. A preeminent challenge in computational

materials synthesis prediction is understanding when

thermodynamics or kinetics are governing phase

evolution and how best to account for the relevant

phenomena using calculations. These approaches can

help reduce the space of plausible transformations

that are likely to take place from a given material or

set of materials.

Machine learning may also be a promising avenue

for advancing computational predictions of materials

synthesis. Jang et al. used partially supervised ML to

show there is a predictive relationship between the

crystal structure of materials and their synthesiz-

ability [171]. Kononova et al. used natural language

processing techniques to extract thousands of solid-

state synthesis recipes from the published literature,

which should prove useful for future data-driven

efforts [172]. A major challenge in the prediction of

synthesizability is the binary nature of this property

— a material is either synthesizable (via some route)

or it is not. This is unlike stability, which can be

quantified continuously using DEd. Further compli-

cating the matter of synthesis prediction is the nature

of scientific research where, with few exceptions,

only successful syntheses are currently reported in

the literature. These two factors present a major

challenge for learning what constitutes synthesiz-

ability using data-driven approaches. The burgeon-

ing call to make more data accessible, including the

so-called ‘failed experiments’ [173], will hopefully

alleviate this challenge.
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AM (2018) Physical descriptor for the gibbs energy of

inorganic crystalline solids and temperature-dependent

materials chemistry. Nat Commun 9(1):4168

[27] Sun W, Kitchaev DA, Kramer D, Ceder G (2019) Non-

equilibrium crystallization pathways of manganese oxides

in aqueous solution. Nat Commun 10(1):573. https://doi.

org/10.1038/s41467-019-08494-6

[28] Amsler M, Hegde VI, Jacobsen SD, Wolverton C (2018)

Exploring the high-pressure materials genome. Phys Rev X

8(4):041021. https://doi.org/10.1103/PhysRevX.8.041021
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