Christopher J. Bartel

cbartel@berkeley.edu | Website (cjbartel.github.io) +1 985 502 1870 | 2130 Bonar St. Apt. C Berkeley, CA 94702 USA

Research Interests

I am a computational chemical and materials engineer working to accelerate the realization of solid-state inorganic materials for energy applications. I approach this problem using *ab initio* quantum chemistry calculations and machine learning. So far, my work has addressed the design of materials for batteries, optoelectronics, solar fuels, ceramics, and catalysts. I also strive for fundamental insights into materials chemistry by working to understand and predict the stability and reactivity of solid-state materials.

Experience

Postdoctoral Scholar, University of California, Berkeley

May 2019 – present

Materials Science and Engineering Advisor: Prof. Gerbrand Ceder

Graduate Research Assistant, University of Colorado Boulder

August 2014 – December 2018

Chemical Engineering

Advisors: Prof. Charles Musgrave & Prof. Alan Weimer

Thesis: Data-driven descriptors for the thermochemistry of inorganic crystalline solids

Education

PhD University of Colorado Boulder, Chemical Engineering	2014 - 2018
MS University of Colorado Boulder, Chemical Engineering	2014 - 2016
BS Auburn University, Chemical Engineering	2010 - 2014

Publications

17 published papers | 12 since 2019 | Google Scholar 8× 1st author | 4× 2nd author | 3× corresponding author Journals include JACS (1st author), Science Advances (1st), Nature Comms (1st), Nature Materials (2nd) (* denotes corresponding author, + denotes equal contribution)

- 17. C. Bartel*, A. Trewartha, Q. Wang, A. Dunn, A. Jain, G. Ceder*, A critical examination of compound stability predictions from machine-learned formation energies, *npj Computational Materials*, **2020**, 6, 97
- 16. N. Singstock, C. Bartel, A. Holder*, C. Musgrave*, High-throughput analysis of materials for chemical looping processes, *Advanced Energy Materials*, **2020**, 14, 2000685
- 15. A. Miura*, H. Ito, C. Bartel, W. Sun*, N. Rosero Navarro, K. Tadanaga, H. Nakata, K. Maeda, G. Ceder, Selective metathesis synthesis of MgCr₂S₄ by control of thermodynamic driving forces, *Materials Horizons*, **2020**, 7, 1310-1316
- 14. **C. Bartel***, J. Clary, C. Sutton, D. Vigil-Fowler, B. Goldsmith, A. Holder, C. Musgrave*, Inorganic halide double perovskites with optoelectronic properties modulated by sublattice mixing, *JACS*, **2020**, 142, 11, 5135-5145
- 13. J. Koettgen, C. Bartel, G. Ceder*, Computational investigation of chalcogenide spinel conductors for all-solid-state Mg batteries, *ChemComm*, **2020**, 56, 1952-1955
- 12. E. Rognerud⁺, C. Rom⁺, P. Todd, N. Singstock, **C. Bartel**, A. Holder, J. Neilson*, Kinetically controlled low-temperature solid-state metathesis of manganese nitride Mn₃N₂, *Chemistry of Materials*, **2019**, 31, 18, 7248-7254
- 11. W. Sun*, C. Bartel, E. Arca, S. Bauers, B. Matthews, B. Orvañanos, J. Tate, W. Tumas, A. Zakutayev, S. Lany, A. Holder*, G. Ceder, A map of the inorganic ternary metal nitrides, *Nature Materials*, **2019**, 18, 732-739
- C. Bartel, J. Rumptz, A. Weimer, A. Holder*, C. Musgrave*, High-throughput equilibrium analysis of active materials for solar thermochemical ammonia synthesis, ACS Applied Materials & Interfaces, 2019, 11, 28, 24850-24858

- 9. A. Palumbo, C. Bartel, J. Sorli, A. Weimer*, Characterization of products derived from the high temperature flash pyrolysis of microalgae and rice hulls, Chemical Engineering Science, 2019, 196, 527-537
- 8. C. Bartel*, C. Sutton, B. Goldsmith, R. Ouyang, C. Musgrave, L. Ghiringhelli*, M. Scheffler, New tolerance factor to predict the stability of perovskite oxides and halides, Science Advances, 2019, 5, eaav0693
- 7. C. Bartel, A. Weimer, S. Lany, C. Musgrave*, A. Holder*, The role of decomposition reactions in assessing first-principles predictions of solid stability, npj Computational Materials, 2019, 5 (1), 4
- 6. R. O'Toole⁺, C. Bartel⁺, M. Kodas, A. Horrell, S. Ricote, N. Sullivan, C. Gump, C. Musgrave, A. Weimer*, Particle atomic layer deposition of alumina for sintering yttria-stabilized cubic zirconia, Journal of the American Ceramic Society, 2019, 102 (5) 2283-2293
- 5. C. Bartel, S. Millican, A. Deml, J. Rumptz, W. Tumas, A. Weimer, S. Lany, V. Stevanović, C. Musgrave*, A. Holder*, Physical descriptor for the Gibbs energy of inorganic crystalline solids and temperature-dependent materials chemistry, Nature Communications, 2018, 9, 4168
- 4. B. Goldsmith*, J. Esterhuizen, J. Liu, C. Bartel, C. Sutton, Machine learning for heterogeneous catalyst design and discovery, AIChE Journal, 2018, 64 (7), 2311-2323
- 3. E. Arca*, S. Lany, J. Perkins, C. Bartel, J. Mangum, W. Sun, A. Holder, G. Ceder, B. Gorman, G. Teeter, W. Tumas, A. Zakutayev*, Redox-mediated stabilization of zinc molybdenum nitride, JACS, **2018**, 140 (12), 4293-4301
- 2. S. Zhang, E. Yu., S. Gates, W. Cassata, J. Makel, A. Thron, C. Bartel, A. Weimer, R. Faller, P. Stroeve, J. Tringe*, Helium interactions with alumina formed by atomic layer deposition show potential for mitigating problems with excess helium in spent nuclear fuel, Journal of Nuclear Materials, 2018, 499, 301-311
- 1. C. Bartel, C. Muhich, A. Weimer*, C. Musgrave*, Aluminum nitride hydrolysis enabled by hydroxyl-mediated surface proton hopping, ACS Applied Materials & Interfaces, 2016, 8 (28), 18550-18559

Fall 2019, Fall 2020

Fall 2019

Fall 2016

Fall 2014

Teaching

Guest Lecturer (e.g., see Lectures 17-19 on YouTube)

University of California, Berkeley | Materials Science and Engineering

G Thermodynamics and Phase Transformations in Solids

Instructor: Prof. Gerbrand Ceder (gceder@berkeley.edu)

UG Materials in Energy Technologies

Instructor: Prof. Kristin Persson (kapersson@lbl.gov)

Graduate Teaching Assistant

University of Colorado Boulder | Chemical Engineering

G Analytical Methods for Chemical Engineers

Instructor: Prof. Will Medlin (will.medlin@colorado.edu)

Instructor: Prof. John Falconer (john.falconer@colorado.edu)

UG Chemical Engineering Thermodynamics

Proposals

Primary contributor ($\sim 50-90\%$) on three funded proposals totaling \$1,037,658 (NSF $\times 3$) Significant contributor ($\sim 30\%$) on one funded proposal totaling \$1,111,270 (DOE $\times 1$)

- 4. C. Bartel, A. Holder (co-PI), C. Musgrave (PI), Automated Search for Materials for Ammonia Synthesis and Water Splitting, NSF Division of Chemical, Biological, Environment, and Transport Systems, Award No. 1806079, September 2018 – August 2021, \$136,329
- 3. C. Bartel, A. Holder (co-PI), C. Musgrave (PI), Machine Learned Free Energies of Compounds, NSF Division of Chemistry, Award No. 1800592, September 2018 – August 2021, \$517,497

- S. Millican, C. Bartel, R. Trottier, Z. Bare, A. Holder, A. Weimer (co-PI), C. Musgrave (PI), Computationally Accelerated Discovery and Experimental Demonstration of High-Performance Materials for Advanced Solar Thermochemical Hydrogen Production, DOE EERE Fuel Cell Technologies Office, Award No. DE-EE000808, September 2017 – September 2020, \$1,111,270
- C. Bartel, J. Walsh (co-PI), R. Hall (co-PI), C. Musgrave (co-PI), A. Weimer (PI), Core/Shell Sinterable Advanced Ceramic Materials Using Particle Atomic Layer Deposition, NSF Division of Civil, Mechanical and Manufacturing Innovation, Materials Engineering and Processing Program, Award No. 1563537, July 2016 – June 2019, \$383,832

Awards

Max S. Peters Outstanding Graduate Student Award Awarded annually to the top PhD graduate in Chemical Engineering at CU-Boulder	2019
DOE EFRC Team Science Competition Winner One of 6 winners from 40 EFRC teams	2019
University of Washington Distinguished Young Scholars Seminar One of 8 selected speakers from >100 applicants	2019
Department of Education GAANN Fellowship $(\times 2)$ Provided full tuition and graduate stipend for 15 months	2017, 2018
National Science Foundation Graduate Research Fellowship Provided full tuition and graduate stipend for 36 months	2014 - 2017
Department of Chemical and Biological Engineering Service Award $(\times 2)$ Awarded for leading the organization of volunteering and outreach events	2016, 2017
Outreach	
Peer Reviewer JACS, Nature Communications, Materials Horizons, JMCA, npj Comp. Mater., and others	2018 – present
Mentor for Undergraduate Research Mentored 5 students for \sim 18 months each (4× Senior Thesis 7× research awards)	2016 - 2019
Co-chair Graduate Leadership Council Service Department Planned and led volunteering and outreach events for Chem. E. graduate department	2015 - 2018

Tutor & Session Chair: NOMAD Summer School

Hands-on course for novel materials discovery

Student Co-organizer: Intl. Conference for Ternary and Multinary Compounds 2018

College of Engineering and Applied Sciences Graduate Mentorship Program Developed and participated in workshops to foster positive mentor-mentee relationships

2017

2018

Presentations

5 invited talks (YouTube link to #1)

- 5. **TMS 2021 Annual Meeting** | Orlando, FL | March 2021 (invitation accepted)

 Talk: Towards predictive solid-state synthesis: understanding phase evolution during the formation of YBCO
- 4. **ASM International IMAT 2020** | Cleveland, OH | September 2020 (canceled due to COVID-19) *Talk*: Is machine learning the formation energy sufficient to accelerate materials discovery?
- 3. Georgia Tech Chemical & Biomolecular Engineering | Atlanta, GA | January 13, 2020 Talk: Data-driven descriptors for solid-state materials discovery
- 2. **Digital Solar Redox Materials Design Workshop** | Berkeley, CA | August 12, 2019 *Talk*: Machine learning for the prediction of material properties
- 1. University of Washington Chemical Engineering (DYSS) | Seattle, WA | July 1, 2019 Talk: Predictive descriptors for the stability of solid-state materials

Presented 25 contributed talks (includes AIChE, MRS, ACS, APS, EMRS, and others)

References

Advisors

1. Prof. Gerbrand Ceder

Daniel M. Tellep Distinguished Professor in Engineering University of California, Berkeley | Materials Science and Engineering Senior Faculty Scientist

Lawrence Berkeley National Laboratory | Materials Sciences Division gceder@berkeley.edu | +1 510 486 7193

2. Prof. Charles Musgrave

Robert H. Davis Professor and Associate Dean of Graduate Education University of Colorado Boulder | Chemical and Biological Engineering charles.musgrave@colorado.edu | +1~303~735~0411

3. Prof. Alan Weimer

Melvin E. and Virginia M. Clark Professor University of Colorado Boulder | Chemical and Biological Engineering alan.weimer@colorado.edu | +1 303 492 3759

Collaborators

1. Prof. Bryan Goldsmith

 $\begin{array}{c} Dow~Corning~Assistant~Professor\\ Chemical~Engineering~|~University~of~Michigan\\ bgoldsm@umich.edu~|~+1~734~764~3627 \end{array}$

2. Dr. Aaron Holder

Solid State Theory and Computational Chemistry Scientist National Renewable Energy Laboratory | Materials and Chemical Science and Technology Assistant Professor University of Colorado Boulder | Chemical and Biological Engineering aaron.holder@colorado.edu | +1~303~735~0754